A LIVER-SPECIFIC DEFECT OF ACYL-COA DEGRADATION PRODUCES HYPERAMMONEMIA, HYPOGLYCEMIA AND A DISTINCT HEPATIC ACYL-COA PATTERN.

A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

Blog Article

Most conditions detected by expanded newborn screening result from deficiency animationbengal.com of one of the enzymes that degrade acyl-coenzyme A (CoA) esters in mitochondria.The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients.We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL), in liver (HLLKO mice).HL catalyses a reaction of ketone body synthesis and of leucine degradation.

Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines.In HLLKO hepatocytes, ketogenesis was undetectable.Carboxylation of [2-(14)C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC).HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis.

Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice flex 4 heartworm test and were inducible by administering KIC.KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels.Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling.KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid), which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication.

Report this page